TYPICAL VOLTAGE DROP CALCULATION FOR 3 - WIRE SYSTEM

VOLTAGE DROP (COPPER CONDUCTOR) = $\frac{D \times A \times N \times 22}{CIRCULAR MILS}$

D = Length of section, in feet.

A = Line operating amperes drawn by one light.

N = Number of lights in the circuit beyond the section.

WIRE SIZE (AWG)	AREA (Circular Mils)		
14	4,110		
12	6,530		
10	10,380		
8	16,510		
6	26,250		
4	41,740		

LINE OPERATING AMPERES				
FOR				
HIGH PRESSURE SODIUM				
LUMINAIRES				
(AT 115 VOLTS)				
,				
100 Watt 1.10 Amps ENERGY EFFICIENT				
100 Watt 1.25 Amps				
150 Watt 1.80 Amps				

200 Watt 2.35 Amps

TYPICAL MULTIPLE STREET LIGHTING SYSTEM

EXAMPLE CALCULATION:

FIND TOTAL VOLTAGE DROP IN CIRCUIT #1: (115 volt system)

NOTE:

Dimension "a" is the distance between the service can and the adjacent load pull box. Use "a"=10' for standard installations where the load pull box is immediately adjacent to the service can.

TOTAL VOLTAGE DROP = 5.43

Voltage drop calculations

Section a =	10 (2.9 x 4) (11) 6.530	= 0.20
Section b + c =	360 (2.9 x 2) (11) 6,530	= 3.52
Section d + e =	350 (2.9 x 1) (11) 6,530	= 1.71

LEGEND

250W High Pressure
Sodium Luminaire
Circuit #1
Service Can
Conduit with #12 AWG

Conductors

NOTE:

Maximum voltage drop allowed in 115 volt system = 6.90 volts.

DATE: 01/17/2007		NOT TO SCALE		
REVISION	BY	APPROVED		DATE

CITY OF ELK GROVE - PUBLIC WORKS

3 - WIRE STREET LIGHT SYSTEM WIRE SIZE AND VOLTAGE DROP CALCULATION

APPROVED BY:

CITY ENGINEER

DRAWING NUMBER

SL - 14

O:\Public Works\Drawings\COEG-StdDwgs\StreetLights\SL14.dw